491 research outputs found

    A Randomized, Controlled Trial on the Effects of Almonds on Lipoprotein Response to a Higher Carbohydrate, Lower Fat Diet in Men and Women with Abdominal Adiposity.

    Get PDF
    BACKGROUND: Almonds have been shown to lower LDL cholesterol but there is limited information regarding their effects on the dyslipidemia characterized by increased levels of very low density lipoproteins (VLDL) and small, dense low-density lipoprotein (LDL) particles that is associated with abdominal adiposity and high carbohydrate intake. The objective of the present study was to test whether substitution of almonds for other foods attenuates carbohydrate-induced increases in small, dense LDL in individuals with increased abdominal adiposity. METHODS: This was a randomized cross-over study of three 3wk diets, separated by 2wk washouts: a higher-carbohydrate (CHO) reference diet (CHO RESULTS: Relative to the CHO CONCLUSION: Our analyses provided no evidence that deriving 20% E from almonds significantly modifies increases in levels of small, dense LDL or other plasma lipoprotein changes induced by a higher carbohydrate low saturated fat diet in individuals with increased abdominal adiposity. TRIAL REGISTRATION: Clinicaltrials.gov NCT01792648

    Endogenous Sex Steroid Hormones, Lipid Subfractions, and Ectopic Adiposity in Asian Indians

    Full text link
    Background: Estradiol, testosterone (T), and sex hormone binding globulin (SHBG) levels are associated with lipid subfractions in men and women. Our objective was to determine if associations are independent from adipose tissue area among Asian Indians. Methods: We used data from 42 women and 57 Asian Indian men who did not use exogenous steroids or lipid-lowering medications. Lipoprotein subfractions including low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), and intermediate density lipoprotein (IDL) were assessed by ion mobility spectrometry. Intra-abdominal adiposity was assessed by computed tomography. Multivariable regression models estimated the association between sex hormones with lipoprotein subfractions before and after adjustment for adiposity. Results: Among women, lower logSHBG levels were associated with smaller logLDL particle size and higher logtriglycerides, logVLDL, and logIDL, although these associations were attenuated with adjustment for visceral adiposity in particular. Among women, lower logSHBG levels was significantly associated with lower logmedium LDL and logsmall LDL concentrations even after consideration of visceral and hepatic adiposity and insulin resistance as represented by the homeostasis model assessment of insulin resistance (HOMA-IR). Among men, lower logSHBG was also associated with smaller logLDL peak diameter size and higher logtriglycerides and logVLDL, even after adjustment for HOMA-IR and adiposity. Relationships between sex steroids and lipid subfractions were not significant among women. Among men, higher total testosterone was associated with higher logHDL and logLDL particle size, and lower logtriglycerides and logVLDL, but these associations were partially attenuated with adjustment for adiposity and HOMA-IR. Conclusions: Among Asian Indians, SHBG is associated with more favorable lipid subfraction concentrations, independent of hepatic and visceral fat.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140166/1/met.2015.0063.pd

    Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content.

    Get PDF
    A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose-fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease
    • …
    corecore